REFERENCES AND ACCESSORIES

	References	Anemoscope description		
ANTC_D3.1		USCITA RS485 MODBUS		
	Optional	Description		
	ANTC_RISC	Self-regulating heater integrated into the body		
	ANTC_INOX	Anemometer material in AISI 316 STAINLESS STEE		
	CAV_SCH5x0,5	Connection cable for anemometer with heater supplied in the required length		

RS485 MODBUS

Thanks to the MODBUS protocol, installation and data display is even easier, in particular:

- Immediate integration into various supervisory, control and automation systems
- Open specifications that do not require hardware constraints
- Reliable communication between automation devices
- Interoperability between devices from different manufacturers

via Don Signini 43 - 28010 - Briga Novarese - NO - ITALY Phone +39 0322 93574 info@nuovaceva.it www.nuovaceva.it

APPLICATION

The ANTC anemoscope has been expressly designed for

- industrial applications such as: • Automated greenhouses
- Photovoltaic solar trackers
- Cable cars for ski plants Cranes and Mobile Cranes
- Wind turbines
- Weather Stations

Wind vane anemoscope					
ndustrial design for all environment					
Digital output RS485 MODBUS					
Rotating transducer mounted on double ball					

bearing

360° Range

Male connector M12

ANTC D3.1 - ANODIZED ALUMINIUM

Wind vane anemoscope with Digital RS485 MODBUS output for industrial use. The ANTC series has been designed and built for industrial applications, in particular:

- Surveys for wind towers
- Historical analysis data logger
- Wind threshold control for photovoltaic sails and solar trackers

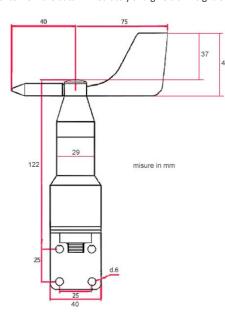
However, it is used in any sector where reliable, robust and precise product characteristics are required.

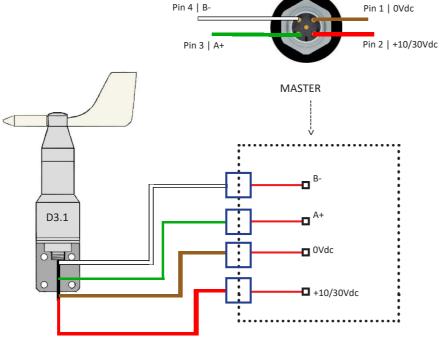
The body of the rotor is machined aluminum with stainless steel support. The head rotates on ball bearings. The vane is made of nylon shock-absorbent and easily interchangeable. It also features a convenient connector for connection. The count rate is via optical transducer, a digital encoder with 12 pulses per revolution.

EACH TRANSDUCER IS TESTED AND EQUIPPED WITH A CALIBRATION CERTIFICATE. On request, it's possible a periodic check and product calibration.

CE

ANTC D3.1




pag. 1/2

CONNECTION & DIMENSIONS

It is possible to combine the anemoscope with a master device with MODBUS protocol to view the data immediately and give alarm signals

TECHNICAL FEATURES

 Electric Features

 Power supply
 10...30 Vdc

 Max. current
 15 mA

 Output
 Digitale RS485 MODBUS

 Type of contact
 Rotary transducer

Measurements

Mechanical Range	da 1° a 360°		
Average error	0,06%		
Standard deviation error	1,01%		
Output	Digital RS485 MODBUS		

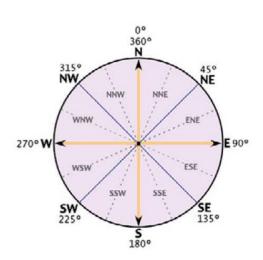
WIND VANE ORIENTATION

The wind vane must be oriented towards NORTH and its output signal RS485 corresponding 00 00 will conform to the angles and directions of the board.

To orient the wind vane towards NORTH, align the fixing bracket perpendicular to the NORTH.

MODBUS PROTOCOL REGISTER

	HOLDING REGISTER						
REGISTER ADRESS	REGISTER ACCESS	MSBLSB	VARIABLE NAME	ТҮРЕ	UNITS	VARIABLE DESCRIPTION	DEFAULT VALUE
1	R	(150)	Wind Speed	uint16	km/h	Anemometer wind speed	
2	R/W	(150)	Modbus ID	uint16		Modbus ID	244
3	R	(150)	Wind direction	uint16	Angle °	Wind Vane wind direction	
4							
5					1000		
6							
7	R/W	(150)	Device Sensor	uint16		Sensor connected to PCB (0: Anemometer / 1: Wind Vane)	1
8	R/W	(150)	Baudrate	uint16	BAUDS/100	Modbus baudrate (96:9600 / 192:19200)	192
9	R/W	(150)	Parity	uint16		Modbus parity (0: None / 1: Even)	1


INPUT REGISTER							
REGISTER ADRESS	REGISTER ACCESS	MSBLSB	VARIABLE NAME	ТҮРЕ	UNITS	VARIABLE DESCRIPTION	DEFAULT VALUE
1	R	(150)	Wind Speed	uint16	km/h	Anemometer wind speed	
5							
3	R	(150)	Wind direction	uint16	Angle °	Wind Vane wind direction	
4							
5							-
6							
5							
5							
5							-

WIND DIRECTION - OUTPUT RATIO TABLE

Direction	Angle	RS485 output
North	0.0	00 00
North-northeast	22.5	00 16
Northeast	45.0	00 2D
East-northeast	67.5	00 43
East	90.0	00 5A
East-southeast	112.5	00 70
Southeast	135.0	00 87
South-southeast	157.5	00 9D
South	180.0	00 B4
South-southwest	202.5	00 CA
Southwest	225.0	00 E1
West-southwest	247.5	00 F7
West	270.0	01 OE
West-northwest	292.5	01 24
Northwest	315.0	01 3B
Northwest-North	337.5	01 51
		f the wind speed is below 3ki

ANTC D3.1

Mechanical Features	chanical Features					
Materials	Machined aluminum					
Connector	M12					
Weight (No cable)	300 g					
Body rotor H	122mm					
Body rotor + support	147mm					
Size with connector M12	7,5 mm					
Top body rotor min. diam.	29 mm					
Top body rotor max. diam.	40 mm					
Max. diam. with vane	115 mm					
Storage temperature	-40 ºC +85 ºC					
Operating temperature	-20 ºC +85 ºC					
EMC	EN 61000-6-1:2001 EN 55022:2001, Class B					
Protection	IP66					

the angle will be uncertain

pag. 2/2